Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Interactions of deep-sea vent invertebrates with their environment: The case of Rimicaris exoculata
Autores:  Schmidt, Caroline
Le Bris, Nadine
Gaill, F
Data:  2008-03
Ano:  2008
Palavras-chave:  Extreme environments
Microorganisms
Chemosynthesis
Biomineralization
Symbiosis
Deep sea
Hydrothermal vents
Mid Atlantic Ridge
Shrimp
Resumo:  The vent shrimp Rimicaris exoculata thrives around many hydrothermal vent sites along the Mid-Atlantic Ridge (MAR), where it aggregates into dense swarms. In contrast to hydrothermal vent fields at the East Pacific Rise (EPR), where the biomass is dominated by tubeworms, clams, and mussels, this shrimp is one of the major animal species at MAR vents. These animals are found in the dynamic mixing interface between cold oxygenated seawater and hot, reduced hydrothermal vent fluid. The adaptation of this shrimp to the hostile deep-sea hydrothermal environment and its survival strategy has been investigated since their discovery at the TAG site in the late 1980s. Rimicaris exoculata is now known to colonize black smoker complexes along the MAR in the depth-range of 2,300-3,900 in (Rainbow, Broken Spur, TAG, Snake Pit, Logatchev, 5 degrees S (Rimicaris of exoculata). Although the presence of the Rimicaris genus was first believed to be restricted to the MAR, a related species, Rimicaris kairei, was found recently at the Central Indian Ridge (CIA) (Edmonds and Kairei vent field). This review summarizes the current knowledge of Rimicaris shrimp, focusing on their spatial and temporal distribution, chemical and thermal environment, as well as on possible nutrition strategies and behavioral aspects. Recent studies suggested that iron oxide encrusted bacteria hosted in the branchial chamber of R. exoculata from the Rainbow vent field (MAR) might rely on iron oxidation. Striking results on the occurrence and morphology of iron precipitates, as well as on bacterial-mineral interaction in the gill chamber, have lead to the hypothesis of an iron-based symbiosis between bacteria and the shrimp. Special attention is called to these issues.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/2008/publication-3925.pdf
Editor:  National Shellfisheries Association
Relação:  http://archimer.ifremer.fr/doc/00000/3925/
Formato:  application/pdf
Fonte:  Journal of Shellfish Research (0730-8000) (National Shellfisheries Association), 2008-03 , Vol. 27 , N. 1 , P. 79-90
Direitos:  2008 National Shellfisheries Association All rights reserved
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional